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UDC 531.3 

ELASTIC SHELLS* 

For the equations of strictly convex thin shells of revolution under uniformpressure 
and fixed clamping of the edge there is shown the existence of a unique solution 
corresponding to equilibrium with radial tensile forces for which the secondaryedge 
effect phenomenon holds. There are constructed appropriate asymptotic expansions, 
and their foundation is given with an estimation of the remainder term. The princ- 

ipal terms of these expansions are represented in the form of simple computational 
formulas. 

It is also shown that the secondary edge effect phenomenon can hold for the 
bending of a thin, shallow, rigidly clamped shell in the shape of an ellipticalpara- 
boloid under uniformly distributed internal pressure. Simple asymptotic formulas 
are written down for the appropriate solution corresponding to equilibrium with only 
tensile forces. 

The equations of the nonlinear theory of thin elastic shells contain two essential small 
parameters in the highest operators: &a (the relative thinness of the wall) and fi* (the rela- 
tive loading1 governed by the formulas 

E - h (ay)-‘, 62 = pa (E/L)-*, y2 -=- 12 (1 - 02) 

where h is the thickness and a is the characteristic dimension of the shell,p istheintensity 
of the transverse pressure. E is Young's modulus, and c is the Poisson's ratio. This explains 
the secondary edge effect phenomenon detected in /I/, which is that as the parameters6 and ~6-2 
tend simultaneously to zero, the edge effect of axisymmetric bending of thin elastic shells of 
revolution develops within the edge effect zone of the "degenerate" problem on the equilibrium 
of an absolutely flexible (soft) shell. 

1. Formulation of the problem. nle nonlinear differential 
metric deformation of rigidly clamped shells of revolution under the 
pressure p can be written in the form /2/: 

equations of the axisym- 
uniformly distributed 

(1.1) 

(1.2) 

All the quantities in (1.1) and (1.2) are dimensionless and interrleated by the dimension- 
al formulas 

Here W is the deflection of points of the middle surface 2, Q is the stress function, E 
is Young's modulus, 4 is the variable radius, and a istheradiusof the reference contour. The 
remaining notation was introduced above. It is later assumed that the shell is strictlyconvex 
(-mp<O-< --ap, O<a<m, a,m = const). For a spherical shell we have 13= -(n/R)@ (Ris the radius of 
the sphere). The function e(P) is considered sufficiently smooth. The small values of 191 
considered below enclose a broad class of service loads. Under external pressure (acting from 
the convexity of the shell) ~>a. while for internal pressure q<O. 
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664 L.S. Srubshchik 

The "degenerate" problem about the equilibrium of an absolutely flexible (soft) shell 
later plays an important role. The appropriate equations are obtained from (1.1) and (1.2) 
for F (1, and are written in the form 

(1.3) 

The problem (1.3) has many solutions /3,4/. However, the so-called positive solutions 
(0" > O).which correspond to equilibria without radial compressive stresses /5/, have meaning 

in mechanics. It is known /3/ that a positive solution exists and is unique, and initsneigh- 

borhood there is a solution of the problem (1.1) and (1.2) as E+O for which U> 0 (such solu- 

tions are called membrane solutions in /3/), and the following asymptotic expansions arevalid 

The functions US. us are obtained by direct expansion of the solution in powers of E and 

are determined from the boundary value problems 

,IL& 
s 

M6U~, Oil\ ,', x 11,,1!, - ilU\ ,I, ,~2 0 (1.5) 
,~I )--1 i.;j= 

i’ 

if’ 

dc ; dL, 

?3 ‘I 
.’ v. L - 7 i 

dv I I 0 1 
7 f- :‘,r .,<I, ~“. .s;> 1 

The boundary-layer functions IL,:, are determined from secondorder differentialequations 

with constant coefficients and are written down in explicit form if the functions !.I, 11, have 
already been found for r<r (see (3.6)-(3.9) in /3/). 

Furthermore, for Ir(j.:l simple asymptotic formulas are constructed by the asymptotic 

boundary-layer method /6,7/ for the positive solution of the problem (1.3) correspondong to 

the solutions of the problems (1.5), and therefore, for the membrane solution of the problem 

(l-l), (1.2). Let us note that the principal terms of the asymptotic for the problem (1.3) 

had been obtained formally earlier /1,8-lO/ for ,,~,(l,,,-b 0. 

For 'I>0 the shell is first "inverted", afterwards the appliedload causes an increase in 
shell convexity, and as will be shown below, takes on an equilibrium mode close tothe surface 

(-Z), which is a mirror image of the bulging initial shell surface relative to the plane of 

the reference contour. This varifies the A.V. Pogorelov hypothesis about theexistenceof such 

equilibrium modes (see the "principle" 31 in /ll/). Let us note that for /v iv.0 the foundation 

of the asymptotic of the membrane solution as F-•rL) generally drops out since the constant in 

the a priori estimate (4.9) in /3/ grows without limit. However, analogous considerations 

for the requirement of a simultaneous tendency of the parameters 0 and &* to zero permit car- 

rying the proof of the existence of the membrane solution and the foundation of its as\ymptotic 

expansions in /3/ over to this limit case as well. 

2. Asymptotic of the positive solution for an absolutely flexible shells 
under small loads. As 1 q I-+0 the problem (1.3) is a singular perturbed problem with a 

small parameter p in the highest operator. In fact, by setting Q = b2, v0 = fb2, u. = y we obtain 

from (1.3) for q> 0 

G’llf-+Y~+eY=o, (y--elf ++=o (2.1) 

f ==$, y=-$+, IfpPJp+<OO 

[ $ - -$f],_l= 0, WO(l)=P,(l)=o, o<s<+ 

Asymptoticexpansions ofthepositive solutionoftheproblem (2.1) are constructedas 6-O 
in the form >i+, ?I+, 

f - f6" = ,z; P Ifk (P) + Q)r CT)], (2.2) 

where '5 = (1 - p)/S. The functions fk, yk areobtainedbyusingthe firstiterationprocess (6,7) for 
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the directexpansionofthe solutionin integerpowersoftheparameter 6. Equatingcoefficients 
of 60, 6'. . . , @tozero, wededuce successivelyfrom)lL21.1) %- 1 

yo= 28, fo = - +Pp88-', yl =fl =O, lJh. =8-l [Afr+,-- +- yiyx_i] , fk = -08-' [&lYi/r-i + Yhio] (k > 2) (2.3) 
i=l 

This same iteration process yields still another family ykrfk(yo = 0, fo ='I@-',...) which 
is not examined later since f. does not satisfy the positivity condition. 

Functions $&,(p,< of the boundary-layer type are obtained by using the second iteration 

process /6,7/. Namely, we substitute (2.2) into (2.1), take account of (2.3), expand the 

functions fk, ykr lj in Taylor series at the point P = 1, set P=l - 6~ and equate the coeffic- 
ients of 60, 61,..,,@ successively. We obtain the system 

$0" + -+ 'PO2 + 6ocpo = 0, foocpo + so’po + BO$” = 0, ( )’ = d ( )/dz (2.4) 

*o’Ir=c; = o, 9oIr=a-l = 0, 8, = 8 (i), foe = f. (I), t = (1 _ p)/6 
to determine $0, 'PO. 

Evidently (r. = q. = 0. Taking this fact into account, we deduce for the determination of 

*i, (pi (i > I) 

$,i” - ao2+i = RI, - %lRizfOO2, ‘Fi = /00-l (I&, - e,$) (2.5) 

m+r+p-i 

x t’f,cpp - x %T”‘& Q (0) = -@i-l (0) + [ 2 - ofi_,] 
m+r+?J=i l , 

m+p Li p=1 

to,, Y,~, j,d = v $- 03. h hdp=,, a (+) = 0, P f i 

Here R*,, Ri, are known functions if yk, fk, (P~,$~, have already been found for O<k,< 
i - 1. In particular, we have R,, = Rlz = 0, and we find from (2.5) 

$I = --fooeo-l'P, = C exp (-aor), a"* = -28,"> 0 (2.6) 

C = 2-1,3(- en)-v 1(2-c) e,, -r e,], e,=-!%I 
dp p=1 

Evidently I#~, cpi are zero-order boundary-layer functions. 

3. Foundation for the asymptotic expansions (2.2). We use the method developed in 
/3,12-14/ for the foundation of the asymptotic expansions (2.1). We introduce the notation 

/14/ 
7rf1 n+l 

f* =fb” $ iz hi% f ~“+“Y?Y Y* = yb” f iz; 6% (3.1) 

where ni, Ei are of an exponential order of smallness in 6 infinitely differentiable monotonic 
functions, where ni (p) = -$i (S-r), & (p)= --Cpi (6-l) f or 0 < p < 0,l and qi (P) = Ei (p) = 0 for 0.2 < 
p< 1. Evidently the functions f*, y * satisfy all the boundary conditions in (2.1) and the 
following estimates hold 

d”z 
max 7 <~~6~+1, I I * 

x=0,1,2 (3.2) 

where z = fb” -f* or Z=yb"-y*. Here, as everywhere in Sect.2, the ci are certain positive 
constants independent of P and 6; the maximum is taken everywhere for O< p < 1. 

Let us introduce Banach spaces of the functions: 1) the space X of the vector functions 
u = {I;,, wo} with the components Foe C,[O, I] and woE CZ IO. 11 which satisfy the boundary con- 
ditions in (2.11 and the norm defined by the equality 1) IJIl.\- -z 1 F, I4 + 1 w. lz; 2) the space Yof 
vector functions b = {b,, b,) with the components b,, bzE C,[O, I] and the norm defined by equal- 
ity I( bll~ ~7 I b,l, + 1 b,l,. The spaces CI,[O, 11 are formed by functions defined in the segment 
[O,l] which have continuous derivatives to order k inclusive. The norm I.(k in Ck [O, 11 is de- 
fined in the usual manner. 

Let us examine the problem (2.1) as an operator equation R(U): 0, where U = {F,. wo) is a 
solution, and the operator R is defined by the left side of the system (2.1) and acts fromthe 
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space X into the space Y. 

According to /3,12-14/, to give a foundation to the asymptotic, it is necessarytoprove 

that the inequality 

is satisfied as h-+0, constructed asymptotic expansion of (3.1), 

R;* 

where U* = {F,*, uO*) is the 

is the F'r&het derivative on the element U*, and R"is the second derivative of the 

operator R. 

Lemma 3.1. Let 6+0 and -mp< 0 < - ap, 0 <a <m, a, m = const. Then the following 

estimates hold 

f*>&P, maxIp_'(y*-8)/,<m+ 1=777, (3.4) 

Proof. Taking account of the inequalities 

we rewrite f* and Y* in the form 

1* - -+ y’0-’ -t 6 ($1 + rll) + 0 (PW~ y* 7 20 + h (‘E, +- 51) -10 @6’) 

from which we deduce (3.4) as 6 _ o by virtue of the conditions of the lemma. 

LeUIma 3.2. Let the conditionsofLemma3.1 be satisfied. Then the following estimates 

hold 

II R (U*) IIY < c,6”+‘, /) R" 11 cc, (3.5) 

The proof is analogous to the proof of Lemmas 2.2 and 2.3 in /14/ and the estimate (4.17) 

in /3/. 

Theorem 3.1. Let the conditions of Lemma 3.1 be satisfied. Then the following esti- 

mate holds 

II I&J*I~’ IJ(y-s) 6~ c&” (3.6) 

Proof. We consider the system of equations with boundary conditions 

R": (U) = b, b y= (b,, b,), u = (F, m) (3.7) 

R”. = ’ i 
1 d 

s”r4t: + -- [u (y’ - e)], 
P dP 

Multiplying the first equation in 

obtained and integrating between 0 and 

ditions 

(3.7) by pF, the second by pw, adding the expressions 

1, we deduce, by taking account of the boundary con- 

Furthermore, taking into account that F(lj = W(1) = I), we find the simple inequalities 

(3.8) 

(3.9) 

Now, by using (3.4), (3.9) and the Cauchy-Buniakovskii inequality, we successively ob- 

tain from (3.8) 

6" (' - ;) II ” 11~~ + & II u llp2 G II bi Ilo II J Ilo + II b, /Iv II w I&, < 2-‘!’ (II 6, II,, II u IIH $ II b, I&, /I u ItpI (3.10) 
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The following estimates hence result directly 

11 ” jl,r + // u Ii,) -: cd-’ ( II b, II!, i- /I b, IIJ 

max / C’ 1 : c,w I! II !I)., c, 1/2(i - CT-I, 62 < 143 (1 .- a))-' 

Integrating (3.7) between 0 and p. we have 

VA,. - u (!," - 13) ~- E,, {*IL + v(~* ~ 8) = B, 

(3.11) 

Applying (3.4) and (3.11), we deduce from the second equation 

max 1 II 1 I- ~,6-~ll b /l,r, c5 = 41 (cam,, + 1) (3.13) 

Let us go from the first equation in (3.12) to the equivalent integral equation 

Differentiating (3.14) twice with respect to p, we obtain 

(3.15) 

From the first equation in (3.15) we find the estimate 

Furthermore, we divide the second equation in (3.12) by 1* and differentiate the expres- 

sion obtained with respect to p. Then applying (3.4), (3.9), (3.14) and (3.16), as well as 
the inequalities 

we derive the estimates 

dli I 
max dp 1 : c,&‘I/ b I,, Cs = 'lore, [I -1 C( + c, 7 ‘lac,c,] (3.17) 

By using (3.17) and the triangle inequality, we have from the second equation in (3.15) 

Finally, we obtain the estimate 

d”o 
lrlal -@? 

where c,, = 1 + m,c,. For this we find from (3.15) 

o~~~(g)_=-zp-'iD(p,p) 

By using (3.4) and (3.18) we hence deduce 

(3.20) 
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We later differentiate the 

triangle inequalties as well as 

(3.19). The estimate (3.6) now 
Cg + C,,. 

L.S. Srubshchik 

first equation in (3.12) with respect to p, and by using the 

the estimates (3.4), (3.17), (3.18), (3.20), we arrive at 
results from (3.11), (3.13), (3.16)- (3.20), where di'z- zr,+ 

Theorem 3.2. Let the conditions of Lemma 3.1 be satisfied. Then there exists a q, such 
that the problem (2.1) has a unique positive solution For 0 <q <ql for which the asymptotic 
expansions (2.2) are valid and the following estimates hold 

max 1 f - f6’ I i- nlax j y - ygk ) < ~~~6”+~, 47 = ti2 (3.21) 
d 

maxl~(ii-_!bh)I.(-rnalI~(y-yyaB)/~_cl,Oi.+', Ii>0 

The proof is carried out by using Theorem 3.2 in /13/. 

The inequality (3.3) is satisfied if 4 in the expansions (3.1) is sufficiently small(O< 

'/KG',) and n> 11. By using (2.2), (3.1), (3.2) we find from (3.20) in /13/ 

II u - u* l/Y rl: c,zPS (n> 3) (3.22) 

We hence arrive at (3.21) by using the triangle inequality and embedding theorems. 

4. Construction of the principal terms of the asymptotic expansions (1.4) 
as q+O.The boundary value problems (1.5) are a singularly perturbed system of linear differ- 

ential equations with a small parameter 1~1 in the highest operator and with variable coeffic- 

ients containing boundary-layer-type functions. In fact, by using the change of variables 

5 I/ T CA0 [x2, . 1 p=- 1 
The functions vi, Oi are found successively, and are considered known for i <A-, where 

(4.1) 

(4.2) 

are defined by (2.2). The asymptotic expansions of the boundary value problems (4.2) are con- 

structed as 6+0 in the form 
"< 

0, - j. 6k btk tp) + rh (qj, %=(I-p)!6 

The functions Y.~. (ask are obtained by direct expansion of the solution (v.. 0,) in powers of 6 

and are determined from simple algebraic equations 

(4.4) 

~7 := -1. -2; k, m,j,i >O; ~i;,P y3.q =o,p = -1, -2, -3 

The boundary layer functions II+',, n,o, are constructed by using the second iteration pro- 

cess /l/. Equations of the form (2.5) with right sides dependent on Hjv,, njo, for j<i. on 

&v,, Q&l for m (s, and also on the coefficients of the Taylor series expansions of the 
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functions Yjs, Oj, for @ = I, etc., are obtained for their determination. 

Limiting ourselves to the principal terms of the asymptotic expansions (2.2), (4.2), by 
using (2.3)- (2.6) as well as (3.6)- (3.9) from /3/, we have for the membrane solution from 

(1.4) for n = 1 in the case Q> 0 as the parameters 6 and c.&' tend simultaneously to zero 

P - vf,b = vo (P, z) + EVI (p, 7) -/- E*hz (t), t = (1 - p),” (4.5) 

u - uF.6 Y %I (P> r) -:- go (t) '- s [U, (P, r) + g, (t)] 

*0=62 
C 
-- + p2R-' + ?CrxP(- aor) f O(W > I T = (1 - p)/h 

ug = 28 -c 2we,2 exp (-cz,,t) -1.. 0 (F), 0, := 0 (1) 

%I’ = %‘~oo-~ = -2b3 11 + 0 @)I, g, (t) = -u. (l)K = --2f+, [I i_ 2C68, + 0 (62)) K 

E:= CUP L--t I/v0(1)1 =rxp[- &a], a=[- 'r&+ C6 f 

0 (I?")]';-; I/,(t) = $+ K 1 “o(i)-e(l)-~~uo(l)K] = 

- ~fi-*%13 (1 - l/.4 exp (- fiat)) exp (- 6at) [ 1 +- 0 (S)] 

t’1= @fi CrP (- u"r) I1 + 0 @)I, 1c1 = 20~W~ csxp (- QT) ;< 
II GO(S g,(t)=-228036-2exp(--a61) >: 11 +&(-2~,)-~,~+~(~)l 

(there are misprints in the formula for h2(t) in /3/ that are eliminated here). Let us note 
that YIk = on = 0 for all k. Moreover, it can be established that the functions gS3,hS+2 from 
(4.1) consist of components of the form t"'exp (--h&zt), where m and n are integers (O,<m< 
s+l,i<nQS+I). The coefficients between these components are expanded in a series of 
integer powers of 6, where the following estimates hold 

dxh:+2 
--=0(l), f&O(l), x=0,1,2 

dlx 

(4.6) 

Theorem 4. 1. Let the conditions 6 < 1, ~6-2 < 1 and (~8~*),'+'s-'-+ 0 (n > 1) be satisfied 
simultaneously. Then a membrane solution of the problem (l.l), (1.2) exists for which the 
asymptotic formulas (4.5) are valid and the following estimates exist 

max 1 6-2 b - %,b) 1 + *ax 1 u - u?,6 1 <,n, (Et’)* (4.7) 

The theorem is proved analogously to the proof of Theorem 4.1 in /3/. The estimates 
(4.13) and (4.17) in /3/ are conserved, but in place of the estimate (4.9) we deduce for the 
same notation 

i/p(vk*)Ilr>, < nZ,(&fi-a)e+' (8->O, E6m2->@ 0 
(4.8) 

where m, is a positive constant independent of fi and t'. For (E/~~)"+~c~+ O(n>l, i.e., in the 
domain somewhat smaller than eJB2e 1) we obtain that all the conditions of Theorem 4.2 in /3/ 
are satisfied. From this theorem the existence of a membrane solution and the foundation of 
the asymptotic expansions (1.4) result. The estimates (4.5) are derived analogously to /13/ 
by using the trinagle inequalities. 

Under the effect of internal pressure (q < 0) the asymptotic expansions of the membrane 
solution and their foundation are carried out exactly the same as for q> 0. Forthepositive 
solution of the problem (1.3) for 62 = -q +O we have the asymptotic expansions (2.2)-(2.5) 
in which it is necessary to set y, -0, to replace 9 by(- (2.3) and 8, by(-f3,)in (2.4) 
and (2.5). Limiting ourselves to just the principal terms of the asymptotic for the membrane 
solution for / ~7 I-0, e/I Q I-+0. we obtain the asymptotic formulas (4.5) but with &I? Ro, hl, VI, 
UI. gl replaced, respectively, by the following expressions: 

u0 = -268,2C exp (-aO~) + 0 (IV), z = (1 - ,3)/e (4.9) 

go (t) = 6 exp (--6at)12C8,2 + 0 (6)l 

h, (t) = 2Cf3,%-W1 exp (@at)[l + 0 @)I 

u1 (P, r) = 6 age1 I(2 - a)Oo + e,l exp (-a,z)[l + c) @)I 
u1 (p: r) = - 28’a,-W’ [(2 - a)B, + @,I exp (-a,~)[1 + 0 (6)l 
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5, Thin shallow shell in the shape of an elliptic paraboloid under uniform 
internal pressure. A secondary edge effect can occur for strictly convex elastic shells 
with fixed clamping of the edge. As an example we consider a shell initially in the shape of 
a thin elliptic paraboloid under uniform internal pressure. The appropriate equations are 
written in dimensionless variables in the form 

Here k,, k, are positive constants. For rigid clamping of the shell at the contour 
_- 

!Js- (Z= i/ 2jlr* COS(/', l/z= 1/ %!lizsincp, 1) .-CD .:I 2s) 

we have the boundary conditions /lS/: 

11: = U'), m- 0. I'$ =-. F,,, - OF,, -i X(TJ'(, -x () (5.2) 

I'# y=: F,,,,, :- (2 i- U)F',,%. -. 3x1;.* .-- (2 -! a)x,Fs - x2 x (2 - qtp -- 0 

(p*S. X are, respectively, the internal normal,the arc length,and the curvature of I'). The 
"degenerate" problem about the equilibrium of an absolutely flexible shell when E 7: 0 is writ- 
ten in the form of a system of equations with nonlinear boundary (edge) conditions (*) 

AT, 1 ’ 21L(.“, uJol ~- li, w,l ~-- 0, Iwo - z: PO] :y q (5.3) 

%lr 0. I’#” = 0, r3F0 x (‘/zwo,, - Z&/l”!]~,’ 

The so-called positive solutions satisfying the following conditions 

fi osz > 0. I,',!,, '.' 0, FoxxFuB,, ~~ F,,,,” .- 0 (5.4) 

everywhere inD +- r have meaning in mechanics for the boundary value problem (5.3) /5,X,17/, 
where D is the domain the shell planform occupies. 

The positive solutions introduced in Sect.1 for the axisymmetric equilibria satisfy the 
conditions (5.4) only upon compliance with the additional inequality dv,ldr>O for rE 10, 11. 

Then as (130 the following asymptotic representations are constructed for the positive 
solution of the problem (5.3) 

Theorem 5 .I. Let 0.5.G k,k,-' c< 2 and q-t 0. Then there exists a i/1 Such that for 0 < 
Q (({I the problem (5.3) has a unique positive Solution (F,, We) for which the asymptotic re- 

presentations (5.5) are Valid, and the following estimates hold for j L= 0, 1.2 

where m, is a certain positive constant independent of (1 and D’ is the derivative of order j. 
The proof of the theorem is omitted and will be presented somewhere else. Compliance 

with the inequalities (5.4) for Foq in the conditions of the theorem is established by direct 
computations. 

Using the presence of the secondsmallparameter Y' in (5.1) and applying the boundary- 

layer method according to the scheme of /17/, we obtain that the problem (S-l), (5.2) has a 

*) See Srubshchik, L.S., Edge effect in the flexure of absolutely flexible shells. Dep. VINITI, 
No.4265-79, 14 December 1979, Rostov-on-Don. 
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solution in the neighborhood of the positive solution (5.5) as the parameters g and &Q-l tend 
simultaneously to zero, for which the following simple asymptotics formulas are valid: 

F = Foq (r> Y) i- 8% (t, Cp), w = wo" (I, Y) + ago (t, cp) (5.6) 

g, = aim-' exp (-pm/&), d2hi/W = xa,m-' [(a, - c) exp (-pm/~) - '!,a, exp (--2pmlE)l 

m= I/N, al=dw, a2 

dp P-O’ C=ap p=o’ N y= IF,,, - xFa,l r> o, t = p/e 

The solution (5.6) corresponds to equilibrium with just tensile forces, and the pheno- 
menon of the secondary edge effect holds for it. 
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